
LLNL-CONF-410283

Architectural Implications for
Spatial Object Association
Algorithms

V. S. Kumar, T. Kurc, J. Saltz, G. Abdulla, S. R.
Kohn, C. Matarazzo

February 2, 2009

IEEE International Parallel & Distributed Processing
Symposium
Rome, Italy
May 25, 2009 through May 29, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Architectural Implications for Spatial Object Association Algorithms∗

Vijay S. Kumar

Department of Computer Science and Engineering, The Ohio State University

Tahsin Kurc, Joel Saltz

Center for Comprehensive Informatics, Emory University

Ghaleb Abdulla, Scott R. Kohn, Celeste Matarazzo

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

Abstract

Spatial object association, also referred to as cross-
match of spatial datasets, is the problem of identifying
and comparing objects in two or more datasets based
on their positions in a common spatial coordinate sys-
tem. In this work, we evaluate two crossmatch algo-
rithms that are used for astronomical sky surveys, on
the following database system architecture configura-
tions: (1) Netezza Performance Server R©, a parallel
database system with active disk style processing capa-
bilities, (2) MySQL Cluster, a high-throughput network
database system, and (3) a hybrid configuration con-
sisting of a collection of independent database system
instances with data replication support. Our evalua-
tion provides insights about how architectural charac-
teristics of these systems affect the performance of the
spatial crossmatch algorithms. We conducted our study
using real use-case scenarios borrowed from a large-
scale astronomy application known as the Large Syn-
optic Survey Telescope (LSST).

1 Introduction

Object association, also known as cross-correlation
or crossmatch, is the process of identifying and com-
paring objects or entities present in different datasets.
Datasets in applications involving object association
are often acquired from multiple surveys or observa-
tions of objects using instruments, e.g., observation of

∗This research was supported in part by the National

Science Foundation under Grants #CNS-0403342, #CNS-

0426241, #ANI-0330612, #CNS-0203846, #ACI-0130437,

#CNS-0615155, #CNS-0406386, and Ohio Board of Regents

BRTTC #BRTT02-0003 and AGMT TECH-04049, the NIH

U54 CA113001 and R01 LM009239 grants, and the NHLBI R24

HL085343 grant.

objects in the sky by telescopes in an astronomy appli-
cation. Each object has a unique identifier and a set of
qualitative and quantitative features including its spa-
tial coordinates. Object data are generally maintained
in lists or catalogs. These catalogs are incrementally
updated with newer observations of the same or dif-
ferent objects over time and hence the sizes of these
catalogs may grow in time.

The crossmatch problem can be defined as follows:
Given two or more datasets of objects, the goal is to
find for each and every object in one dataset, all ob-
jects in the other datasets that lie within a certain “dis-
tance” from the object. Here, the notion of distance is
defined based on an application-specific metric. When
two objects are compared based on their positions in a
common spatial domain, then the problem is referred to
as the spatial object association or spatial crossmatch.
The distance metric generally corresponds to the Eu-
clidean distance or the angular separation between the
objects in the domain. The spatial crossmatch prob-
lem is commonly encountered in many application do-
mains. For example, a biomedical researcher may wish
to match observations from multiple microscopy im-
ages to study the temporal evolution of cancerous cells
within an organism. As another example, in astron-
omy, astronomers seek to crossmatch celestial objects
extracted from images of sky regions that are captured
over time at different wavelengths and under different
experimental conditions. In this case, objects observed
by a telescope in a given time period may need to be
compared and matched with objects in a historical cat-
alog constructed from earlier observations.

The catalog-based nature of object association nat-
urally lends itself to the use of relational database
systems for data management. In this paper, we in-
vestigate and evaluate a set of database systems with
different architectural configurations and identify per-

formance differences and bottlenecks in these systems
for spatial crossmatch use-cases mainly driven by the
astronomy community. We focus on spatial cross-
match in the context of a large-scale astronomy appli-
cation known as the Large Synoptic Survey Telescope
(LSST) [1]. Our experiments are based on real use-case
scenarios put forth by the LSST astrophysicists. We
investigate the execution of two well-known, database-
oriented crossmatch algorithms using 1) Netezza Per-
formance Server R©, a parallel database management
system with active disk style architecture support for
certain types of database operations, 2) MySQL Clus-
ter, a database system designed for high-availability
and high-throughput, and 3) a distributed collection
of independent database system instances with support
for data replication.

2 Motivating Application

We investigate spatial crossmatch in the context of a
large-scale astronomy application known as the Large
Synoptic Survey Telescope or LSST [1]. The LSST is
a wide-field survey reflecting telescope. When it be-
comes operational, it will photograph the entire sky
every three nights. The LSST presents hitherto un-
precedented data acquisition rates, thanks to a 3.2 Gi-
gapixel camera that can capture an image of a sky re-
gion – corresponding to the field-of-view (FOV) of the
telescope – every 15 seconds. This will translate to
about 15-20 terabytes of data acquired each night. All
image data will be archived and is expected to top out
at 55 petabytes after 10 years [5]. The LSST catalogs
are expected to contain around 50 billion objects at the
end of the survey.

One of the principle scientific goals of the LSST
project is to enable the detection of small objects
and transient events that occur deep in the solar sys-
tem. Astrophysicists have put together several analysis
pipelines to realise this goal. One of the pipelines is the
association pipeline (AP), which crossmatches the new
detections for each sky region against objects in a his-
torical catalog with a user-specified search radius. A
common search query in this analysis pipeline is the
n-way crossmatch query: “Given n catalogs of objects,
for each object belonging to one catalog, determine all
potential matching objects from the remaining n−1 cat-
alogs”, i.e. determine all objects in the other catalogs
that lie within a search radius of d arcseconds from the
source object. In database parlance, this crossmatch
query corresponds to a spatial join operation, i.e., a
join between the object catalog table (henceforth re-
ferred to as Object) and the object detections tables
(henceforth referred to as DIASource because the new

detections are obtained using Differential Image Anal-
ysis performed on light sources) based on the spatial
coordinates and other spatial attributes of the objects.
The crossmatch query helps multiple collaborating as-
tronomers in the community to correlate their observa-
tions which are likely to have been gathered at different
wavelengths from different geographical locations using
instruments with different detection capabilities.

The LSST association pipeline is divided into three
phases: a prepare phase that extracts and prefetches
relevant field of view (FOV) data from Object into a
new table (FOVObject), a compare-and-update phase,
which performs the distance-based crossmatch between
the prefetched data and detections and decides if alerts
need to be generated, and a postprocessing phase that
commits any changes as a result of the crossmatch to
disk. Object density within an FOV is estimated to be
around 4 million on an average and around 10 million
in the worst case. It is also estimated that a snap-
shot would contain one new detection for every hun-
dred objects within an FOV. Therefore, the associa-
tion pipeline would involve, at the least, a crossmatch
of 40,000 new detections against 4 million objects. The
biggest challenge from a computational perspective is
the near real-time transient alert generation [4]; if a
new detection cannot be matched against any known
historical object, an “alert” must be triggered in near
real time (within 30 seconds of the image capture)
so that the astronomy community can closely moni-
tor this previously unknown transient object. Existing
database-oriented solutions on uniprocessor configura-
tions are unable to meet the LSST requirements. Our
work sought to help the LSST determine the most suit-
able infrastructure to deploy for this time-critical activ-
ity. Hence, we investigate the use of database system
configrations over shared-nothing architectures in an
effort to improve upon the existing solutions. In sec-
tion 3, we discuss some related efforts that target the
crossmatch challenge.

3 Related Work

Most efforts towards performance optimization of
the spatial crossmatch problem for large datasets fo-
cus on reducing the computation cost (i.e., minimizing
the number of object comparisons) and the disk I/O
overheads. We classify these efforts into two broad
categories: customized solutions and database-oriented
solutions.

Customized solutions are those in which the cross-
match logic is implemented outside of the database.
These solutions are usually application-specific and in-
volve the use of special data structures and specific op-

timizations for a given architecture. For the LSST ap-
plication, Serge Monkewitz of the Infrared Processing
and Analysis Center (IPAC) has developed a shared-
memory based solution that performs real-time cross-
match on in-memory object data. Spatial indexes can
be employed to speed up the extraction of relevant
FOV objects from the Object catalog. Over the years,
many spatial indexing schemes have been developed
for storage and retrieval of spatial data. Gaede and
Gunther [7] provide a comprehensive survey of such
schemes. Variants of the R-tree index have been used
to support nearest-neighbor and other spatial queries in
astronomy. The Hierarchical Triangular Mesh (HTM)
spatial index by Kunszt [13] recursively divides the
sky area into multiple spherical triangles and numbers
them based on spatial proximity. Taylor [14] has pro-
posed O(N log N) tile-based and multicone indexing
approaches for the crossmatch. Papadomanolakis et
al. [10] developed an indexing algorithm known as Di-
rected Local Search (DLS) for efficient query processing
in unstructured tetrhedral meshes. Gray et al [8] pro-
pose a finer-grain “zones” indexing scheme that mini-
mizes computational cost by reducing the search space
for each object. While the use of indexes improves
data selection times, complex indexing schemes can
slow down updates to Object. Data compression and
incremental clustering are some of the techniques that
have been used in the past to reduce disk I/O volume
and facilitate efficient data updates.

Crossmatch logic in database-oriented solutions is
implemented in the database itself using SQL. Popular
database systems support a basic set of native spatial
indexing schemes such as the R-tree. The more com-
plex indexing schemes may be implemented as stored
procedures within the database system but at the cost
of performance. Power [11] has experimentally evalu-
ated the performance of crossmatch algorithms on large
catalogs using the MySQL and ORACLE database systems.
Szalay et al. [9] have developed an algorithm for the
crossmatch that uses a “zones” indexing scheme. They
have implemented this algorithm on the Microsoft SQL
Server system. Becla et al. [5] describe the spatially
partitioned storage of the object catalog in the form of
sub-tables, where each sub-table contains object data
for a region or chunk of the sky. These sub-tables are
striped across multiple disks for fast access. No in-
dices are maintained for the sub-tables. As a result,
update performance improves at the affordable cost
of increased data selection time. Our work is simi-
lar to these earlier works in that we target database-
oriented solutions to support spatial object association.
We study the impact of different parallel architectural
configurations and their idiosyncrasies on astronomi-

cal crossmatch algorithms and suggest techniques to
improve performance on these configurations based on
our evaluations.

4 Crossmatch algorithms

In this section, we describe two crossmatch algo-
rithms that are well-known to the astronomy commu-
nity. We use these algorithms in our experimental eval-
uation.

4.1 Zones algorithm

The Zones algorithm for the astronomy crossmatch
was proposed by Gray et al. [8] and makes use of a spa-
tial indexing scheme known as the zones index. The sky
is viewed as a sphere referenced using declination and
right ascension coordinates that wrap around near the
poles. The zones index bins this sphere data horizon-
tally into non-overlapping “zones” or bands of some
predefined height such that objects with similar dec-
lination values lie within the same zone. Given such
a partitioning, the search space within which to look
for potential object matches for a detection can now
be restricted to the containing zone and a small sub-
set of its “neighboring” zones, collectively known as its
neighbor set. This is because the motion character-
istics (e.g., orbital paths) of celestial objects are not
arbitrary. Figure 1 shows how the spherical sky is par-
titioned into zones, and how the zones index can be
used to reduce the crossmatch search space. For ex-
ample, in the figure, the zone height and search radius
chosen result for crossmatch of an object result in a
neighbor set consisting of 3 zones. Further constraints
based on the declincation and right ascension ranges
within these zones help reduce the search space of ob-
jects to the dotted rectangle that borders the search
radius.

Figure 1. Spatial parameterization of the sky
and the use of the zones index

Gray et al. [8] have expressed their crossmatch algo-
rithm in the form of an SQL query as shown in Figure 2.

Here, ZoneNeighbor is a precomputed table that main-
tains the neighbor set information for each zone, ra and
decl are respectively the right ascension and declination
coordinates for the object in the sky while x, y and z
are its projected spatial coordiantes that enable fine-
grain distance-based comparison. We refer the reader
to the paper by Gray et al. [8] for a detailed description
of the query.

SELECT d.objID, o.objID
FROM DIASource d, FOVObject o

INNER JOIN ZoneNeighbor zn

ON d.zoneID=zn.zoneID
INNER JOIN o ON zn.matchZoneID=o.zoneID
WHERE o.ra BETWEEN d.ra-zn.∆ra AND d.ra+zn.∆ra

AND d.decl BETWEEN d.decl-θ AND d.decl+θ
AND POW(d.x-o.x,2)+POW(d.y-o.y,2)

+POW(d.z-o.z,2)< dmax

Figure 2. SQL query for the Zones crossmatch
algorithm (DIASource vs. FOVObject)

4.2 Optimized Zones Algorithm

The Optimized Zones (OptZones) algorithm pro-
posed by Becla et al. [5] is an improved form of the
Zones algorithm that exploits the LSST-specific as-
sumption that each zone’s neighbor set contains a max-
imum of three zones: the containing zone itself and the
two “sandwiching” zones (i.e., zonei−1 and zonei+1 for
a given zonei) along the declination dimension. The
main advantage here is that the neighbor set of a zone
can be easily computed on the fly and zone neighbor
information need not be precomputed and explicitly
maintained like in Zones. The algorithm traverses all
zones within an FOV in non-decreasing order starting
from the least zone ID to the largest zone ID within
that FOV. The spatial attributes of all objects that
lie within the neighbor zones of each such zone i are
loaded into a SecondaryZonei table created on-demand
for zone i. The algorithm then does an all-to-all com-
parison between detections that lie within zone i and
all entries in the SecondaryZonei table to obtain the
crossmatch results for objects in zone i. The same steps
are repeated for every zone in the FOV 1. Becla et al.
have implemented the OptZones algorithm using SQL

and stored procedures supported by certain database

1As the zones are traversed in increasing order, the

SecondaryZone tables are not created afresh for each zone. In-

stead, they are refreshed in a 3-way sliding window fashion as

we iterate from one zone to the next.

systems. Figure 3 shows the SQL equivalent of part of
the algorithm that does crossmatch for objects within
a zone i.

SELECT d.objID, s.objID
FROM DIASource d

INNER JOIN SecondaryZonei AS sz

ON d.ra BETWEEN sz.ra-∆ra AND sz.ra+∆ra
WHERE d.zoneID = i

AND sz.decl BETWEEN d.decl-θ AND d.decl+θ
AND POW(d.x-sz.x,2)+POW(d.y-sz.y,2)

+POW(d.z-sz.z,2)< dmax

Figure 3. SQL crossmatch query for zone i in
the OptZones algorithm

5 Architectures and Database Configu-

rations

Database system configurations on uniprocessor ar-
chitectures are generally unable to meet the real-time
requirements of the LSST crossmatch. In this section,
we present three alternative database system configura-
tions running on shared-nothing parallel architectures.
These configurations differ with respect to their data
storage and retrieval mechanisms, query execution and
storage engines.

5.1 Configuration 1: Parallel Database
System with Active Disks

The first configuration consists of a parallel database
system which runs on a parallel backend and employs
active disk style [3] hardware acceleration for some
of the database operations. We chose this configura-
tion to evaluate the efficency of parallel query execu-
tion (how suitable are the crossmatch algorithms to
parallelization?) and to study the impact of active
disk style processing on the crossmatch. We used a
highly-scalable commercial data warehouse appliance,
the Netezza Performance Server R© (NPS) [2] as a
representative for this configuration. The NPS system
consists of one frontend and a large number of back-
end “snippet” processing units (SPUs) all intercon-
nected via a Gigabit Ethernet switch. The frontend
does query parsing, parallel query plan generation (i.e.
all queries including complex queries like joins are bro-
ken down into sub-queries or snippets that are exe-
cuted in parallel on each SPU) and combines snippet
results obtained from all SPUs. Each SPU is an em-
bedded processor equipped with its own memory and

disk. The tables in the database are partitioned and
distributed across the disks on the SPUs. NPS does not
support the concept of in-memory tables and supports
limited caching in the SPU memories; hence, when-
ever a new query references a table, there is I/O in-
volved as the table’s contents need to be retrieved off
disk each time. To minimize the I/O, this configura-
tion leverages hardware acceleration provided by active
disks. Active disk based systems push computation
closer to the data (by offloading processing to disk-
resident processing units), as opposed to the conven-
tional idea of staging disk-resident data into memory
for processing [3] (Processing units are integrated with
disk controllers so that application-specific code exe-
cuting on these units can process the data at the rate
at which it streams off disk). NPS employs active disk
style processing by delegating simple database opera-
tions such as row-based filtering and column-based pro-
jection to pre-programmed Field Programmable Gate
Array (FPGA) units placed near the disks of each SPU.
In addition to these salient features of Configuration 1,
NPS also combines the use of the following additional
features:

Hash-based data partitioning : NPS uses hash-based
data partitioning to uniformly distribute the rows in
each table across all SPUs. In general, such a uniform
distribution of data based on a hash of the contents of
one or more “distribution columns” will lead to better
load balance amongst the SPUs during query execution
and hence better performance.

User-defined functions: NPS provides support
for application-specific user-defined functions (UDFs)
which cannot be expressed using SQL. UDFs are coded
in a high-level language and are translated into object
code executed in parallel by each SPU on its local data.

Zone-maps: NPS does not support index construc-
tion on the data. Instead, Netezza provides zone-maps
(not to be confused with the Zones algorithm) imple-
mented in the software. While indices generally tell a
database system what data to read, zone-maps tell the
system what not to read. For each new query, a zone-
map look-up tells the FPGAs on each SPU what disk
blocks not to read.

5.2 Configuration 2: High-Throughput
Network Databases

The second configuration consists of a high-
throughput network database system which runs on
a cluster of shared-nothing high-end processors, each
having a large amount (a few Gigabytes) of local mem-
ory. Such configurations are not used to optimize per-
formance of a single complex query inasmuch as they

are used to support a large number of concurrent sim-
ple queries. The motivations behind evaluating such a
configuration are two-fold: (1) This configuration uses
the collective memory of all cluster nodes to store data;
that is, all tables and index data are stored in memory
on these nodes and the database system provides the
frontend with a virtual unified view of a single, large
memory pool spanning all nodes. With increasing af-
fordability of memory and the rise in popularity of non-
volatile flash memory, it may be feasible to store entire
astronomy catalogs in such memory pools. High-speed
interconnects in today’s architecures provide rapid ac-
cess to remote memory in such pools. Using this config-
uration, the prepare phase and the crossmatch can be
performed entirely on in-memory data, thereby leading
to significant I/O savings. (2) This configuration is de-
signed to support the execution of multiple concurrent
queries. We wish to know if crossmatch algorithms can
exploit this feature for improved performance.

We used the open-source MySQL Cluster [12] as
the representative for this configuration. An instance
of MySQL Cluster comprises one manager node and
a set of data (backend) nodes and API (frontend)
nodes. MySQL Cluster has a memory-based transac-
tional storage engine that partitions all table and in-
dex data and distributes them uniformly (based on a
hash of one or more distribution columns) across the
memories of the data nodes. MySQL Cluster is also
a high-availability database, where data can be repli-
cated synchronously so that there is no single point of
failure. Data is periodically logged to local disk on each
data node to prevent data loss. A query is parsed by
the frontend node that it was submitted to. The locally
generated query plan is then broadcast to all the data
nodes. MySQL Cluster does not have a parallel query
engine and hence, does not implicitly support parallel
execution of all query types. Index lookup and table
scans can occur in parallel on all data nodes, mak-
ing MySQL Cluster efficient for point queries and data
lookup operations. However, joins and complex queries
cannot be executed in parallel on the data nodes. How-
ever, unlike NPS, MySQL Cluster supports a wide range
of distributed indexing mechanisms.

5.3 Configuration 3: Independent
Databases with Replication

The third configuration is a hybrid configuration
that we designed by borrowing the best features of the
earlier two configurations. This configuration consists
of a distributed collection of independent database sys-
tem instances which run on a cluster of shared-nothing
high-end processors with large amounts of memory

(i.e., on each such data node, we have a single, inde-
pendent database server instance). The frontend con-
sists of a single master node responsible for parsing po-
tentially multiple concurrent queries and for sub-query
generation, i.e., dividing each query into a set of small
sub-queries that can be submitted as a batch for con-
current execution on the data nodes. This configura-
tion does not implicitly support any parallel query plan
generation as was the case in configuration 1. Instead,
it tries to explicitly exploit coarse-grain parallelism at
the sub-query level. Effectively, we have created an
opportunistic coarse-grain parallel query engine that
seeks to generate small, disjoint sub-queries for a given
query. Like configuration 2, this configuration sup-
ports index construction and maintains all table and
index data in memory on the data nodes. Each table
is explicitly partitioned by the master node which then
distributes its rows uniformly among the data nodes.
However, unlike the earlier configurations, the frontend
does not have a virtual unified view of the data on all
data nodes because we are dealing with an indepen-
dent collection of database system instances, each of
which have access only to local data. Like configura-
tion 1, joins and complex sub-queries can be executed
in parallel on the backend data nodes.

This configuration also supports various degrees of
data replication in order to tune performance based on
the query workload. In one extreme form of this config-
uration, data replication is disabled, in which case the
data is uniformly partitioned across the data nodes.
Here, the querying mechanism will resemble configu-
ration 2, where the master node needs to broadcast
every sub-query to all the data nodes. This is be-
cause each data node contains a portion of the table
referenced by the sub-query; hence, all data nodes are
involved in the execution of any sub-query. This is
the DataPartition-QueryBroadcast execution strat-
egy and is useful for light query workloads. At the
other extreme, complete data replication is enabled,
i.e., all data is present on all the data nodes. Here,
the querying mechanism mirrors configuration 1 in that
each sub-query is executed by any one data node. This
is the DataBroadcast-QueryPartition strategy and
is useful for small datasets and heavy query workloads.
In general, any intermediate replication strategy can
be chosen that will result in data being replicated on
and each sub-query being executed by a subset of the
data nodes. The novelty of this hybrid configuration is
that, by choosing an appropriate replication strategy,
we can tune for performance, given any DIASource and
FOVObject sizes.

We used open-source MySQL as the database system
instance on each data node. The master node (fron-

tend) was implemented in C++ and executes outside of
the database. The master node controls the partition-
ing and replication of data and schedules the execution
of each batch of sub-queries among the data nodes.
Our implementation of this configuration uses Data-
Cutter [6] for runtime support and parallel execution
in a shared-nothing cluster environment. DataCutter
is a component-based middleware framework that uses
the filter-stream programming model. Application pro-
cessing structure is implemented as a set of compo-
nents, referred to as filters, that exchange data through
a stream abstraction. In this configuration, we used a
version of DataCutter which employs the MVAPICH
flavor of MPI for communication. This enabled us to
leverage Infiniband support on clusters (where avail-
able) for high-speed communication and data exchange
between the MasterNode filter and each DataNode fil-
ter.

Figure 6 summarizes the pros and cons of each of the
architectural configurations discussed in this section.

6 Performance Evaluation

In this section, we describe the dataset and query
region characteristics used in our experiments and
present results from our evaluation of the two cross-
match algorithms under each configuration. In our
experimental evaluation, for comparison purposes, we
also include as our baseline, a naive approach to cross-
match which takes each detection in DIASource and
compares it against every object in FOVObject.

6.1 Dataset and Query Characteristics

We use the USNO-B catalog (a public astron-
omy catalog generated by US Naval Observatory at
Flagstaff containing over a billion objects) as it closely
emulates the characteristics of the data that LSST
would generate when it becomes operational. Each ob-
ject record is around 100 bytes. The crossmatch search
radius, θ was set to 3 arcseconds. We use three different
test FOV regions to evaluate crossmatch performance.
These regions are characterized by differences in their
object density (high, average, low). Detections for an
FOV region are obtained by applying a perturbation
function on the objects within that FOV. This func-
tion generates a new detection for roughly every hun-
dred objects in an FOV. Table 1 summarizes the char-
acteristics of each test region including the number of
matches that result from crossmatching detections and
objects within that region. Our focus is to improve
performance for the high density FOV, because of its
closeness in density to the average LSST case.

Figure 4. Alternative Database Architecture Configuration s, their pros and cons

FOV # Objects Approx. # # resulting

Region DIASources matches

density

High 3044468 30551 53938

Average 373763 3709 4888

Low 76073 764 942

Table 1. Test Region Characteristics

6.2 Configuration 1: Netezza Perfor-
mance Server

The NPS [2] system at the Lawrence Livermore Na-
tional Laboratory was used to evaluate configuration
1 described in section 5.1. The frontend of the sys-
tem is connected via Gigabit Ethernet switch to 56
SPUs. Each SPU had 320 GB local disk with a read
bandwidth of 60 MB/sec per SPU disk. The cata-
log data was distributed uniformly amongst the SPUs
based on a hash of the object ID column. The prepare
phase on NPS extracts objects for the FOV region from
the Object catalog and loads it into a disk-resident
FOVObject table distributed across all SPUs.

We made the following changes to the crossmatch
algorithms to deploy them on NPS: (1) the original
schema was modified so that all tables are no longer
indexed; the Zones and OptZones algorithm now work
on non-indexed disk-based tables. (2) The query in-
terface for NPS, nzsql does not support stored proce-
dures and hence, we cannot express loop traversal in
nzsql. For OptZones, we wrote a script outside of the
database that emulates the algorithms loop traversal

from minimum to maximum zone IDs within an FOV.
This script effectively issues a join operation (between
the contents of zone i and SecondaryZonei) on behalf
of the stored procedure for each of the n zones within
an FOV. These joins are then executed as a batch of
tasks. (3) The script also inserts BEGIN TRANSACTION

and COMMIT statements at appropriate positions within
this batch of tasks in order to minimize transactional
overheads that arise from executing each join explicitly
as a separate statement. (4) nzsql does not support
stored functions. Therefore, we developed a a user-
defined function (UDF) in C++ to determine the right
ascension search range (∆ra) for a given zone. The
UDF was registered with the NPS system and executes
on each SPU when the script for OptZones is invoked.

FOVObject vs. DIASource

Test FOV Region Naive Zones OptZones

High density 1950 s 51 s 210 s

Average density 26 s 3 s 96 s

Low density 2 s 0.7 s 67 s

DIASource vs. FOVObject

Test FOV Region Naive Zones OptZones

High density 2739 s 52 s 280 s

Average density 37 s 3 s 132 s

Low density 2 s 0.7 s 118 s

Table 2. Crossmatch time on Netezza Perfor-
mance Server

Table 2 shows the execution time for crossmatch on

NPS assuming that the FOVObject and DIASource are
already resident on the SPU disks. We observe that
the Zones algorithm outperforms other algorithms for
all test regions in spite of the fact that it involves a pair
of expensive join operations performed without index
support on the NPS. This shows that for configuration 1:
(1) the query engine of the parallel database system can
very efficiently break down even complex queries like
the Zones algorithm into snippets for parallel execution
on the SPUs, and (2) the active disk style processing
(FPGAs in the NPS aided by zone-maps) are able to
take on the bulk of the data filtering so that the joins
can be performed efficiently on the SPUs even without
indexes.

The OptZones algorithm performs poorly on the NPS
as compared to Zones. In fact, for the medium and
low density regions, even a naive approach does better
than OptZones. This result defies the theory that the
OptZones query will always perform better than Zones
and points to a potential mismatch between the Opt-
Zones algorithm and this configuration. The following
discussion explains this mismatch in greater detail:

• The OptZones needs to create and populate on-
demand the SecondaryZonei table prior to per-
forming the join operation between objects within
a zone i. This will work well only in configura-
tions where table data is maintained in memory,
because data movement from source to destina-
tion tables is achieved via either a local in-memory
data copy or accessing remote memories over a fast
network. However, in this case, the same opera-
tion involves a extraction of data from disk on all
SPUs, creation of a new on-disk SecondaryZonei

table, and writing the contents of this table onto
disk. Suppose an FOV has n zones, then the ad-
ditional overhead of creating and populating this
on-disk table n times factors heavily into the per-
formance of OptZones (The zone height and FOV
dimensions in our experiments resulted in around
210 zones per FOV).

• One can argue that the SecondaryZonei tables
could also be created beforehand as part of the
prepare phase. However, the lack of stored proce-
dures in nzsql means that the SQL statement from
figure 3 cannot be prepared just once and reified
for each zone i. Each of the n queries are instead
explicitly issued via an external script as a batch of
tasks, thereby entailing query parsing and trans-
actional overheads. We argue that for the Zones
algorithm, the query style involves a single com-
plex query accessing disk once for large data and
hence, is more suited to such a configuration than

OptZones, where a large number of simpler queries
repeatedly access disk for small data.

With sufficient number of SPUs, we believe that
the Zones algorithm running on NPS will meet LSST
constraints. One main concern with this configura-
tion is the high prepare phase time (around 85 sec-
onds per FOV) which places it way outside LSST time
constraints. We tried to avoid the prepare phase al-
together by crossmatching the on-disk DIASource di-
rectly against the entire Object catalog, an operation
that took 18 minutes 2. So, we partitioned the Object
catalog into a set of N coarse disjoint chunks C1, C2,
. . . , CN . Each chunk Ci is represented in the database
as a sub-table Ti, whose size is much smaller than the
original table. The rows of each sub-table are dis-
tributed across all SPUs. So, given an FOV region,
we now determine the m chunks that intersect this
FOV region using an externally maintained chunk in-
dex. The crossmatch for the FOV can then be carried
out by simply merging the results from the m cross-
matches between DIASource and the sub-table Ti cor-
responding to intersecting chunk Ci. In this “parti-
tion & crossmatch” strategy, we used chunks of size
4.5 degrees × 4.5 degrees, distributed among 48 SPUs
(8 SPUs were down at the time of testing). The high-
density FOV region intersected with 4 such chunks.
The results of the crossmatch against each of these
four chunk tables is shown in Table 3 and compared
against the time it would take to directly crossmatch
the DIASource against a single FOVObject table cre-
ated during the prepare phase.

DIASource Crossmatch time # matching

vs. entries

Chunk 1 21 s 13196
Chunk 2 20 s 14424
Chunk 3 19 s 14140
Chunk 4 17 s 12178

Total 77s 53938

Table 3. Crossmatch time on Netezza
Performance Server using “Partition and
Crossmatch” strategy (Zones algorithm used
for crossmatch of DIASource against each
chunk)

The results show that the crossmatch time for the
high density FOV (obtained by adding the crossmatch
times for each chunk within the FOV) is 77 seconds.
In contrast, the direct crossmatch between FOVObject

2Crossmatch time increases exponentially with the size of

the tables involved as larger tables imply greater data exchange

among the SPUs

and DIASource for the high density FOV took 71
seconds on the same number of SPUs. This shows
that “partition & crossmatch” strategy performs only
slightly worse as compared to the direct crossmatch be-
tween DIASource and FOVObject for the high density
FOV on 48 SPUs. Of greater significance is the fact
that we no longer need a prepare phase to extract and
prefetch data. The increase in crossmatch time, albeit
not by much, is expected because, in the absence of in-
dex support, detections are compared against every ob-
ject within each intersecting chunk. To further reduce
crossmatch time, we tried to issue these m crossmatch
queries concurrently from the NPS frontend. However,
NPS and other representative systems for this configu-
ration are not optimized for throughput of execution of
multiple concurrent queries, i.e., the hardware acceler-
ators can only service one snippet at a time. Hence, we
were restricted here by the sequential nature in which
multiple queries are executed by the NPS frontend.

6.3 Configuration 2: MySQL Cluster

This configuration was implemented using a MySQL

Cluster instance running on an NSF-funded cluster
at the Ohio State University. The cluster consists of
16 AMD dual-processor Opteron-250 nodes, each with
8 GB of memory, giving us a collective memory pool of
128 GB. The nodes are interconnected by both an In-
finiband and 1Gbps Ethernet network. The maximum
disk bandwidth per node was around 35 MB/sec and
55 MB/sec respectively for sequential reads and writes.
The MySQL Cluster instance consists of one manager
node, 8 data nodes and upto 8 frontend nodes. A sin-
gle copy of the data is distributed uniformly among the
data nodes.

Table 4 shows execution times for the crossmatch
algorithms for the high and average density regions.
In these experiments, the crossmatch queries are sub-
mitted to a single frontend node. The performance
for Zones and OptZones algorithms are worse than in
the previous configuration. This is because, in general,
there is a mismatch between the requirements of both
the algorithms and this configuration. The core oper-
ation in both crossmatch algorithms is the JOIN op-
eration. However, in this configuration, joins are not
executed in parallel. Instead, the relevant data from
the tables being joined is sent to a single node where
the join takes place. The poor performance of Zones is
attributed to the inability of the MySQL query engine to
recognize and use the appropriate index for the JOIN

even in the presence of user-provided hints. We also ob-
served that joins and other complex queries in MySQL

Cluster are always performed on the frontend node

FOVObject vs. DIASource

FOV Region Naive Zones OptZones

High density 11h 22m 11h 58m 13m 34s

Average density 10m 16s 10m 57s 18s

DIASource vs. FOVObject

FOV Region Naive Zones OptZones

High density 9h 27m 10h 2m 19m 40s

Average density 8m 37s 9m 15s 2m 30s

Table 4. Crossmatch time on MySQL Cluster

where the query was submitted. The OptZones algo-
rithm issues n join queries, one for each of the n zones
in an FOV. For each of these queries, the tables ref-
erenced by the join operation are transferred over the
network from the remote memories on the data node
to the frontend node. Moreover, MySQL Cluster does
not employ data caching on the frontend nodes. Con-
sequently, even though one of the tables being joined
is common to all n queries, it is never cached at the
frontend node and is repeatedly transferred over the
network n times. This inefficient join mechanism em-
ployed in MySQL Cluster causes tremedous data trans-
fer overheads and explains the poor performance of the
OptZones algorithm in this configuration. Improve-
ments to the join mechansims in future versions of
MySQL Cluster will help prevent this mismatch.

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8

Q
ue

ry
 e

xe
cu

tio
n

tim
e

(s
ec

)

Number of API nodes (= number of concurrent subqueries)

Figure 5. Scalability with number of frontend
nodes (8 data nodes and the average density
region were used)

The main motivation behind using this configura-
tion was its ability to issue a large number of concur-
rent subqueries from multiple frontend nodes. Hence,
we seek to divide the crossmatch queries into a num-
ber of sub-queries that can be executed in parallel. At

first, it might appear that the OptZones is better suited
to this approach as it implicitly issues multiple join
queries (one per zone in the FOV) that can be exe-
cuted independently provided all the SecondaryZonei

tables have been created beforehand. However, the
number of zones, n in an FOV is generally much larger
than M , the maximum number of permissible frontend
nodes in a MySQL Cluster instance. As a result, each
frontend node would submit (n/M) sub-queries, imply-
ing that data is transferred (n/M) times from back-
end to frontend. The resulting overheads will undo the
benefits of concurrent query execution. The ideal sce-
nario is one where data is transferred exactly once to
each frontend. This can be achieved by dividing the
query into as many concurrent sub-queries as there are
frontend nodes. We divided the Zones query explic-
itly into a maximum of M sub-queries, where M is
the number of frontend nodes in our MySQL instance.
Each frontend node would submit a query responsible
for (1/M)th of the overall query workload. Figure 6.3
shows how crossmatch time decreases as we increase
the degree of parallelism, i.e., the number of frontend
nodes that concurrently execute sub-queries. For the
average density FOV, increasing the number of fron-
tend nodes beyond 4 did not improve the crossmatch
times. The execution time, even when 8 frontend nodes
are used, does not meet LSST requirements. This is be-
cause each sub-query of Zones also suffers from MySQL

query engine’s non-recognition of appropriate indexes.
Assuming other representive systems for this configu-
ration utilize the correct indexes, we argue that this
configuration can scale well to a large number of fron-
tend nodes and meet the LSST time constraints.

6.4 Configuration 3: Independent
Databases with Replication

This configuration was developed using the same
hardware specified in Section 6.3. Each of the 16 nodes
ran an independent MySQL server with table data stored
on local memory. An additional node served as a mas-
ter node and coordinated the query execution. This hy-
brid set up can be divided into independent groups of
nodes based upon a replication factor: A set of n nodes
can be divided into g groups of p nodes each. Data
from the entire object catalog is distributed among the
nodes in each group. Here, g is the replication fac-
tor because copies of data exist in each group, and
there are g such groups. At one extreme, we may have
an n × 1 grouping, i.e., a single group consisting of n
nodes. This corresponds to the case where the data is
uniformly partitioned amongst the nodes without any
replication (similar to the data distribution schemes in

NPS and MySQL Cluster). At the other extreme, we
can have a 1 × n grouping meaning we have n groups
of one node each, where data is replicated across all the
nodes, and a query can be executed indepenedently by
any node/group. By modifying g and p for a given n,
we can evaluate intermediary grouping schemes which
help us control the data partitioning and replication
more flexibly than in our earlier configurations.

We evaluated the OptZones algorithm which had to
be modified to run in this configuration. The naive
algorithm was not evaluated under this configuration
because it requires an all-to-all comparison between ob-
jects and detections, while this configuration seeks to
localize all crossmatch computations and support no
communication between the database instances. Repli-
cation of the historical data amongst the nodes is done
as an offline operation and is not part of our evaluation.
Given a FOV, the master node first communicates the
FOV to the worker nodes so that they can prefetch the
historical objects within that FOV into an in-memory
FOVObject table (i.e., the prepare phase). The mas-
ter node then sends the new detections(DIASources)
for that FOV to the data nodes. Once the data nodes
receive these detections, they perform the crossmatch
in memory against only those objects that they locally
own. In this confguration, our main goal is to be able
to avoid the need for a distributed join operation. Since
we are using an independent set of database instances,
we need to structure the execution of the crossmatch
queries such that the join operations performed on each
data node need access to local data only.

The overall query execution time in this config-
uration includes the time to transfer the detections
over the network and the time to execute the query.
The amount of data transferred and the computational
workload on each data node will depend upon the
grouping strategy adopted. In the n×1 (only partition-
ing, no replication) case, every join operation poten-
tially needs data from all nodes on account of the uni-
form partitioning of the Object table. Here, the mas-
ter node needs to send the DIASources to all the data
nodes. This could prove to be a bottleneck in the case
where the number of DIASources is extremely large and
comparable to the number of objects in the FOV, or in
the case where our configuration has been deployed on
a cluster with slow network connections between the
nodes. This scheme would work well in the case where
we have low-power processors connected via high speed
communications medium. On the other hand, in the
1×n case, each join query can be executed by any one
of the nodes. So, the master node divides the query
workload equally amongst the data nodes and sends
only (1/n)th the number of DIASources to each data

node. In this case, we are reducing the volume of data
communicated. But each data node will have to cross-
match its share of the DIASource against all objects
in the FOV. This case would ideally suit clusters with
very fast processors and slower networks. In the in-
termediate grouping strategies, the master node would
need to send a subset of the DIASources to a group of
data nodes.

FOV Prepare DIASource Query Total

time transfer time time time

High 1.9 s 5.6 s 1.3 s 7 s

Average 0.9 s 5 s 0.2 s 5.4 s

Low 0.8 s 5 s 0.1 s 5.3 s

Table 5. Crossmatch time using 16x1 strat-
egy (OptZones algorithm), FOVObject vs.
DIASources

Table 5 shows the execution times for each phase of
the crossmatch in this configuration when we choose
to simply partition the data without any replication.
The “total” column is the sum of DIASource transfer
time, the time to load the DIASources into memory
on the data nodes and the query execution time and
is measured as the execution time as perceived by the
master. The overall crossmatch times obtained using
this configuration, especially for the high-density FOV
region comfortably outperform the other two configu-
rations. This is because this hybrid configuration com-
bines the best features of the other two configurations.
Like configuration 2, it stores all data in the memories
of each node, supports indexing of the data and the
concurrent execution of multiple sub-queries. Like con-
figuration 1, it performs joins in parallel at the back-
end nodes (depending on the replication factor for the
data). By combining the best features, this configura-
tion is able to achieve superior crossmatch times over
other configurations, provided the crossmatch query
can be suitably broken down into smaller independent
sub-queries. We also note that the performance num-
bers obtained for this configuration are not specifically
tied to MySQL database system instances. We believe
that the trends observed in these results would be sim-
ilar when other database engines are used for this con-
figuration in place of MySQL.

Figure 6 shows that for the high-density FOV re-
gion, the total crossmatch time using this configuration
was always within the LSST time constraints. We also
investigated the effects of data replication using this
configuration. The figure shows that, as the replication
factor is increased, the data nodes spend more time on
the prepare phase(not shown) and more time on query

 0

 2

 4

 6

 8

 10

 12

 14

TotalQueryTransfer

E
xe

cu
tio

n
tim

e
(s

ec
)

Crossmatch phase

8x2
4x4
2x8

Figure 6. Varying replication factors and
query partitioning mechanisms (OptZones al-
gorithm, high density FOV region, DIASource

vs. FOVObject)

execution. The transfer time decreases, although only
marginally for our test case. The increase in query
execution time is explained as follows: As replication
factor increases, the data nodes are responsible for ex-
ecution of smaller parts of the query. That is, they
handle the crossmatch of a smaller set of detections.
At the same time, the smaller set of detections needs
to be crossmatched against a larger number of FOV ob-
jects. Since the number of FOV objects is much larger
than detections in our use cases, we can expect this
trend for most FOV regions. However, in cases where
the number of detections and objects in an FOV are
comparable and large, we should observe a decrease in
transfer times with increasing replication factors and a
more gradual increase in the query execution times. In
this way, the replication factor can be tuned to extract
optimal performance for different sizes of DIASource

and FOVObject.

7 Summary and Conclusions

In this work, we have explored and evaluated
database-based solutions to spatial object association
or crossmatch, an important spatial data analysis
operation that finds use in diverse application domains
ranging from astronomy to GIS. We have investigated
two variations of spatial crossmatch algorithms,
Zones [8] and OptZones [5]. These two algorithms im-
plement different query styles and optimizations. Our
experimental evaluation shows that (1) The Zones al-
gorithm performs better than the OptZones algorithm
on the first database system configuration, because (a)
OptZones constructs and populates SecondaryZone

tables on-demand for every zone in an FOV. These
tables are created on disk (as opposed to memory)
and distributed across all the nodes in the backend.
The overhead of creating disk-based tables on-demand
for each zone leads to poor performance; (b) The
lack of support for stored procedures in the system
resulted in overheads due to external scripts being
treated as independent queries. (2) On the second
database system configuration, the algorithms do not
perform as well as they do on the first configuration.
This is because the second configuration does not
execute a query in parallel and executes JOINs on the
frontend. However, performance of the algorithms
can be improved by partitioning a query into a set
of smaller queries and executing these sub-queries as
a batch, to take advantage of the high-throughput
oriented design of the second configuration. (3) The
third configuration enables different partitioning and
replication of the catalog tables across a collection
of the independent database system instances. The
performance results obtained from the OptZones
algorithm on this configuration indicates that the
query execution time increases as the amount of
data replication increases. This is because replication
reduces the amount of DIASource entries broadcast to
multiple nodes, but increases the time for the prepare
and query phases, since each node has to deal with a
larger portion of the FOVObject table. Even in our
extreme case, the size of the DIASource was relatively
small. It can be expected that if DIASource is much
larger, then a configuration that supports replication
of portions of the FOVObject table could be more
efficient, since replication will reduce the amount of
DIASource entries broadcast.

Acknowledgements. The authors wish to thank
the late Marcus Miller for his help in configuring the
Netezza systems at Lawrence Livermore National Lab-
oratory (LLNL) and Serge Monkewitz of the Infrared
Processing and Analysis Center (IPAC) for providing
access to relevant algorithms and datasets. The au-
thors also wish to thank Sergei Nikolaev and Don Dossa
of LLNL for their help in understanding LSST appli-
cation details.

References

[1] LSST – Large Synoptic Survey Telescope. http://

www.lsst.org/.
[2] The Netezza FAST Engines Framework: A Pow-

erful Framework for High-Performance Analytics.
http://www.netezza.com/documents/whitepapers/

fastengines.pdf. Netezza Technical White Paper,
2007.

[3] A. Acharya, M. Uysal, and J. Saltz. Active disks:
programming model, algorithms and evaluation. In
ASPLOS-VIII: Proceedings of the eighth international
conference on Architectural support for programming
languages and operating systems, pages 81–91, New
York, NY, USA, 1998. ACM.

[4] J. Becla, A. Hanushevsky, S. Nikolaev, G. Abdulla,
A. S. Szalay, M. A. Nieto-Santisteban, A. Thakar,
and J. Gray. Designing a multi-petabyte database
for LSST. The ACM Computing Research Repository
(CoRR), abs/cs/0604112, Apr 2006.

[5] J. Becla, K.-T. Lim, S. Monkewitz, M. Nieto-
Santisteban, and A. Thakar. Organizing the extremely
large LSST database for real-time astronomical pro-
cessing. Sep 2007. 17th Annual Astronomical Data
Analysis Software and Systems Conference (ADASS
2007), London, England.

[6] M. Beynon, R. Ferreira, T. M. Kurc, A. Sussman, and
J. H. Saltz. Datacutter: Middleware for filtering very
large scientific datasets on archival storage systems.
In IEEE Symposium on Mass Storage Systems, pages
119–134, 2000.

[7] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[8] J. Gray, M. A. Nieto-Santisteban, and A. S. Szalay.
The zones algorithm for finding points-near-a-point or
cross-matching spatial datasets. The ACM Comput-
ing Research Repository (CoRR), abs/cs/0701171, Jan
2007.

[9] M. A. Nieto-Santisteban, A. R. Thakar, and A. S. Sza-
lay. Cross-matching of very large datasets. In National
Science and Technology Council(NSTC) NASA Con-
ference, 2007.

[10] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu,
D. R. O’Hallaron, and G. Heber. Efficient query pro-
cessing on unstructured tetrahedral meshes. In SIG-
MOD ’06: Proceedings of the 2006 ACM SIGMOD in-
ternational conference on Management of data, pages
551–562, New York, NY, USA, 2006. ACM.

[11] R. A. Power. Large Catalogue Query Performance in
Relational Databases. Publications of the Astronomi-
cal Society of Australia (PASA), 24:13–20, May 2007.

[12] M. Ronstrm and L. Thalmann. MySQL Cluster
Architecture Overview, High Availability features of
MySQL Cluster. MySQL Technical White Paper,
2004.

[13] A. S. Szalay, J. Gray, G. Fekete, P. Z. Kunszt,
P. Kukol, and A. Thakar. Indexing the sphere with the
hierarchical triangular mesh. Technical Report MSR-
TR-2005-123, Microsoft Research, Aug 2005.

[14] M. Taylor. Crossmatching developments. DS3 Report,
VOTech Stage 6 Planning Meeting, 2007.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

